GradeSaversToronto.com We Make Math Easy.

MATH 2271 Chapter 11.1

Homework Help ~ Tutorials ~ Practice Tests

Inner Product of 2 functions

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx$$

Orthogonal Functions

When the inner product is equal to 0, the two functions or orthogonal.

$$(f_1, f_2) = \int_a^b f_1(x) f_2(x) dx = 0$$

Orthogonal Set

A set of real-valued functions $\{\phi_0(x), \phi_1(x), \phi_2(x), ...\}$ is orthogonal if

$$(\phi_m, \phi_n) = \int_a^b \phi_m(x)\phi_n(x)dx = 0 \quad m \neq n$$

Norm (Length)

$$\left|\left|\phi_{n}(x)\right|\right|^{2} = \int_{a}^{b} \phi_{n}^{2}(x) dx$$
$$\left|\left|\phi_{n}(x)\right|\right| = \sqrt{\int_{a}^{b} \phi_{n}^{2}(x) dx}$$

Orthonormal Set

If $||\phi_n(x)|| = 1$ for an orthogonal set of functions $\{\phi_n(x)\}$

Show that the given functions are orthogonal on the indicated interval.

 $f_1(x) = x, f_2(x) = x^2; [-2,2]$

Show that the given functions are orthogonal on the indicated interval.

 $f_1(x) = x, f_2(x) = \cos(2x); \ \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Show that the given set of functions is orthogonal on the indicated interval. Find the norm of each function in the set.

 $\{\sin x, \sin 3x, \sin 5x, ...\}; \left[0, \frac{\pi}{2}\right]$

The functions $f_1(x) = x$ and $f_2(x) = x^2$ are orthogonal on the interval [-2, 2]. Find constaints c_1 and c_2 such that $f_3(x) = x + c_1x^2 + c_2x^3$ is orthogonal to both f_1 and f_2 on the same interval.